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LETTER TO THE EDITOR 

Correlation equalities and coupling constant bounds 
implying area decay of Wilson loop for Z2 lattice gauge 
theories? 

F C Sa Barreto and M L O’Carroll 
Departamento de Fisica, Universidade Federal de Minas Gerais, 30.000, Belo Horizonte, 
Minas Gerais, Brazil 

Received 6 June 1983 

Abstract. We obtain correlation equalities for Z2 lattice gauge theories and apply them 
to obtain area decay of the Wilson loop observable in a range of the coupling parameter 
larger than that obtained from mean field theory considerations. 

In this letter we consider the well known Wilson loop observable of a 2 2  pure gauge 
Z d  lattice theory with Wilson action, i.e. 

where (W(C) ) ,  is the finite lattice Gibbs ensemble average with Wilson action 
Boltzmann factor exp(@ZpcA ,yp) (Wilson 1974, Seiler 1982, Kogut 1979). P denotes 
the unit squares (plaquettes) of A. We let Sb denote the bond variables which take 
values k l .  W ( C )  is the product of Sb along the perimeter of the planar rectangle C 
of area A. 0 < p  < CO is the gauge coupling constant. 

Area decay of ( W ( C ) )  is a criterion for confinement. By expansion methods, it is 
known that area decay occurs for small p and for sufficiently large p perimeter decay 
occurs for d 3 3 (Seiler 1982, Kogut 1979). For d = 2, ( W ( C ) )  has area decay for all 
p by explicit calculation (Kogut 1979). We take free boundary conditions and note 
that Griffiths’ first and second inequalities apply and therefore imply the existence of 
the thermodynamic limit (Glimm and Jaffe 1981). 

For d = 2,3,4 we obtain lower bounds pL on the area decay of ( W ( C ) ) ,  i.e. for all 
/3 CpL, ( W ( C ) )  has area decay, using correlation identities and Griffiths’ inequalities. 
The correlation identities are a gauge version of Callen identities employed by the 
authors (Sa Barreto and O’Carroll 1983) to obtain lower than mean field upper bounds 
on the critical temperature for king spin systems. For completeness we give a mean 
field type lower bound pM (pM<pPL) using a decoupling and Griffiths inequality 
argument (Sa Barreto and O’Carroll 1983, Tomboulis et a1 1981). 

Theorem 1. For each p c (0, [2(d - 1)]-’), W ( C )  s exp[ - lln(2p(d - 1))IAI. 
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Proof. For definiteness assume C lies in the x l x z  plane. Fix a bond b in the lower 
left-hand corner of C, Replace p by PA, A E [0,1] in the action for the 2(d - 1) 
plaquettes (call them P1 . . . PZ(d-1)) that have one bond in common with b. Denote 
the corresponding expectation by ( W(C)) , .  Integrating (d/dA )( W ( C ) ) ,  gives, noting 
that ( W ( C ) ) ,  = 0, 

using Griffiths’ first (second) inequality in the first (second) equality. Each term on 
the right corresponds to a modified contour determined by the bonds of the variables 
of W(C)xp,  which enlarges or diminishes C by one plaquette. We repeat the argument 
proceeding along successive rows of plaquettes enclosed by C. After A applications 
we arrive at 

W ( C ) s p A  (sum of [2(d -1)lA terms). 

Each term is non-negative and bounded above by 1 giving ( W ( C ) )  s [p2(d - l)lA, 

We now give some correlation identities for d = 2,3,4 which are derived in a 
manner completely analogous to the ones for Ising spin systems (Sa Barreto and 
O’Carroll 1983) and will be used in theorem 3 to extend the p region of area decay 
given by theorem 1 and d = 3,4. 

Theorem 2. Let S D  = Si, . . . Si, denote a product of distinct bond variables and for a 
fixed bond b occurring in SD give a numerical ordering 1 , 2 , .  . . to the 2(d - 1) 
plaquettes that have one bond in common with b. Then for: 

(a) d = 2 ( s D )  = a2 C ( s D x P , ) ,  
i 

a 2  = $ tanh 20, a2 3 0; 

a3 = 2-3(tanh 40 + 2 tanh 2p),  

b3 = 2-3(tanh 4 p  - 2 tanh 2p) ,  

a3 a 0, 

b3 s 0; 

+e4 C ( S D X P ~ ~ P ~ X P & ‘ P I X P ,  ), 
i < j < k < l < m  

a4 = 2-’(tanh 6p + 4 tanh 4p + 5 tanh 2p) ,  a4 3 0, 

64 = 2-’(tanh 6p - 3 tanh 2p),  

c4 = 2-’(tanh 6p - 4 tanh 4p + 5 tanh 2p), 
64 s 0, 

C 4  3 0. 
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Proof. We have 

L433 

where 

Let us consider the bond b, with sb, and the plaquette X b  which contains the bond b. 
Let Sg) be the product SD with the bond b deleted. We have 

Summing over S b  and introducing D = a/ax through eaDf ( x )  = f ( x  +a), we get 

Sg) t anhp  1 S&&) 
(neighbours of 6 )  

= (Sg) n [cosh PD+ (S&&,,) sinh PD]) tanh x 
(neighbours of 6)  

Applying this result for d = 2’3’4 gives, after some algebra, (a), (b) and (c). 

Remark 1. On the right-hand side of these equations note that sb is absent since it 
always appears an even number of times in each term. 

Remark 2. Other equalities, such as Euclidean lattice equations of motion for averages 
of gauge invariant observables, could also be obtained as previously (Sa Barreto and 
O’Carroll 1983). 

Theorem 3. Let 0 be such that: 

(a) 4a3  < 1. Then ( W ( C ) )  s exp( - Iln[4a311A) for d = 3. 

(b) 6(a4+c4)< 1. Then (W(C))aexp(-lln[6(u4+c4)]lA) f o r d  =4 .  

Proof, (a) We use the same method as in the proof of theorem 1 except we use 
theorem 2(b). For b E C 

( W ( C ) ) = a 3 c  (w(c)xPi>+b3 (w(c)xP~xPjxPk> 
i i < j < k  

S a3 c (W(C)XPi) 
i 

since b3 is negative and ( W(C)xp,,yPjxpk) is positive by Griffiths’ first inequality. At 
each application of the equality we pass to an inequality by dropping the b3 terms; 
after A steps we arrive at 

( w(c)) s a f (sum of 4A terms) 

where each term is less than one. 
(b) As in (a) but using theorem 2(c). We can drop the b4 terms in favour of an 

inequality. At each stage we have six terms from the u4 term and six terms from the 
c4 term. 
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